Stantec

To:	File	From:	Dale Grove
			6188 Rome Circle NW Rochester, MN 55901
File:	I-90 Roadway Segment Safety Analysis - MRM 38.0 to MRM 39.3	Date:	February 23, 2018

Reference: I-90 Roadway Segment Safety Analysis - MRM 38.0 to MRM 38.7

DIAGNOSIS & CONTRIBUTING FACTORS

The purpose of this memo is to identify safety issues, suggest contributing factors, and propose countermeasures to improve safety for a curved segment of I-90 between reference mile-points 38.0 and 38.7. Geometric features of the 0.7-mile roadway segment include a horizontal curve with a length of 932.48 feet in the eastbound direction and 1023.22 feet in the westbound direction. Additional geometric data is summarized in **Appendix A. Figure 1** shows the location of focus area.

Figure 1 – Study Area Map

Thirty-four (34) crashes were recorded from 2012-2017 with the predominant crash type being run-off the road (ROR) crashes (74%, 25 crashes). Although the curve ranked second in the list of crash hot spots in terms of crash frequency (as identified in the Crash Analysis memo), it ranked first in terms of crash severity with two (2) incapacitating injuries and five (5) non-incapacitating injuries. When compared to segments of similar length within the corridor, it consists of the highest proportion of single vehicle crashes. Table 1 shows that the frequency of ROR crashes per year is consistent during the analysis period, except for 2016 in which none occurred. The study segment was determined to have a crash rate of 151, the highest among I-90 segments of similar length and exceeding the statewide average crash rate of 129 for rural interstates.

Design with community in mind

February 23, 2018 File Page 2 of 5

Reference: I-90 Roadway Segment Safety Analysis: - MRM 38.0 to MRM 38.7

Location	ROR Crashes by Year									
	2012	2013	2014	2015	2016	2017				
EB I-90 - MRM 38.0 to MRM 38.7	2	5	2	2	0	1				
WB I-90 - MRM 38.0 to MRM 38.7	4	0	1	3	0	5				

Table	1 _		Crashes	hv	Year	hv	Direction	(2012-2017)
lable	. –	NOK	Clashes	Dy	reur	Dy.	Direction	(2012 - 2017)

Contributing factors to ROR crashes typically include: inadequate lane width, slippery pavement, inadequate median width, poor delineation, and excessive speed. Of the thirty (25) recorded ROR crashes, eighteen (18) cases involved excessive speeds. While most ROR crashes did not involve a collision with a fixed object, ten (10) incidents involved cases where the vehicles overturned resulting in severe injuries to occupants. Weather related crashes accounted for sixty percent (60%) of ROR crashes along the curve segment. Due to the consistency of ROR and overturning crashes along this segment, countermeasures to reduce crash frequency and severity seem to be warranted.

COUNTERMEASURES

Highway safety could be improved by deploying countermeasures that reduce the severity of ROR crashes, or inform motorists of adverse weather conditions. Countermeasures include:

- Improved Roadside Design installation of cable barrier, proper grading of roadside embankments, improved roadway wearing surface, and installation of curve warning signs.
- Intelligent Transportation Systems (ITS) Installation of Road Weather Management Systems

Roadside Design

Higher performance guardrail is recommended due to the horizontal curvature and crash history of the roadway segment. Installation would adhere to guidelines outlined in the AASHTO Roadside Design Guide Figures 5-1a to 5-3b and SDDOT RDM Chapter 10. An average median width of 80 feet in the study area, combined with an ADT of 17,570, suggests that median barriers are considered optional according to the AASHTO Roadside Design Guide Figure 6-1 or SDDOT Figure 10-7. While ROR crashes consistently occurred along the study segment, only two cross median crashes occurred within the 5-year period being investigated. Typically, this suggests that median barrier may not be necessary. Additionally, there is not a significant elevation difference between the eastbound and westbound directions of I-90 to justify a special circumstance. However, SDDOT should continue to monitor the occurrence of cross median crashes in this section of roadway to determine whether median barrier would be justified in the future.

February 23, 2018 File Page 3 of 5

Reference: I-90 Roadway Segment Safety Analysis: - MRM 38.0 to MRM 38.7

While curve geometrics meet requirements for the posted speed of 75 mph, it does not for 80 mph although it is recommended that horizontal curves are designed for the posted speed plus 5 mph to reflect possible operating speeds. As reflected in the crash history, it is possible that horizontal curvature may be difficult to perceive due to its proximity to the high point of the vertical curvature. Due to the combination of adverse factors at the curve, it is recommended that SDDOT explore additional countermeasures for mitigating crashes within the focus area. A recent improvement was made to I-90 in 2017 when a high friction wearing course was applied to the eastbound lanes. It is not yet possible to determine the effects of the treatment.

ITS (Road Weather Management Systems)

Road Weather Management systems improve safety along roadways by actively mitigating the impacts of adverse weather conditions. They typically fall into the following three categories:

- Advisory Strategies Provide information on prevailing weather conditions to the motorist using Dynamic Messaging Signs.
- Control Strategies Monitors pavement conditions and alters traffic flow using variable speed limits or other control strategies.
- Treatment Strategies Applies treatments to roads such as salt or anti-icing chemicals to minimize weather impacts.

Current ITS infrastructure along the I-90 corridor includes SDDOT's Maintenance Decision Support System (which routinely collects data within the project limits), dynamic message signs (DMS) located in both directions from Exits 32 to 34, and road closure gates located at the Sturgis exits. The use of dynamic advisory speed signs is currently being investigated along I-90 from Exit-37 to 2-miles south of Tilford. There are currently no environmental sensor stations for monitoring roadway conditions within the analysis area. Some potential drawbacks of the existing systems are summarized in Table 2.

February 23, 2018 File Page 4 of 5

Reference: I-90 Roadway Segment Safety Analysis: - MRM 38.0 to MRM 38.7

ITS System	Drawbacks
Road Closure Gates	Not fully automatedRestricts access to local traffic
Maintenance Decision Support System (MDSS)	 No 24/7 operation Limited coverage area Mainly used as a maintenance tool
Dynamic Advisory Speed Signs	Costly implementation
Traveler Information Systems (DMS)	 Limited by scope of MDSS system Inconsistent coverage

Table 2 – Limitations of Existing ITS Infrastructure

Another possible ITS advisory strategy for reducing the number of ROR crashes at the focus area is outlined in the sections that follow.

Advisory Strategy – SDDOT Adverse Weather Warning System

This option would utilize a combination of environmental sensor stations to detect icy/snowy roadway conditions and warning signs with flashing beacons or traveler information systems (DMS) to provide a real-time alert to motorists when slippery conditions are either possible or present. The intended outcome would be for motorists to reduce speeds during adverse weather conditions, leading to a reduction in the number of crashes. An example schematic of the warning system is provided in Appendix B. A similar strategy was implemented by the California Department of Transportation (Caltrans), on a five-mile segment of State Highway 36, which reduced annual crashes by eighteen percent (18%) with an estimated safety benefit of \$1.7 million dollars¹.

Design with community in mind am \\us1291-f01\shared_projects\193804017\reports\crash analysis\curve analysis report\i-90_curve_safety_analysis.docx

¹ FHWA, Best Practices for Road Weather Management, 2012

February 23, 2018 File Page 5 of 5

Reference: I-90 Roadway Segment Safety Analysis: - MRM 38.0 to MRM 38.7

System Components & Operations

The system would consist of in-roadway sensors, warning signs with flashing beacons or DMS, and a Road Weather Information System (RWIS). The sensors would detect pavement data such as temperature and condition (icy, wet). The remote processing unit component of the RWIS continuously evaluates the condition of the pavement sensors to determine whether to send a signal for activation of the flashing warning signs or DMS. The system could eventually be expanded to integrate with SDDOT's proposed dynamic advisory speed signs. Installed environmental sensors as part of the curve warning system could be used to feed pavement condition data to the future proposed variable speed limit system. The curve warning system could complement the dynamic advisory speed signs to prevent crashes.

<u>Placement</u>

The sensors would be placed at the beginning or midpoint of the curve, whereas the flashing warning sign and DMS screen would be placed in advance of the curve to give motorists sufficient time to adjust their speed.

Possible Implementation Issues

Due to the rural nature of I-90 in this area, a fixed power supply may not be available. As a result, the field equipment would need to operate on solar power. Additionally, system monitoring and communications between components may need to be done utilizing wireless technology due to the possibly prohibitive cost of trenching cables.

Monitoring

The system would need to be periodically monitored using speed and crash reductions as performance measures. Crash reduction could be assessed through observational before-after studies.

STANTEC CONSULTING SERVICES INC.

Dale Grove Principal/Project Manager

Phone: (507) 529-6039 Dale.Grove@stantec.com

Attachment: Appendix A – Geometric Data Appendix B – ITS Solution

cc. Aaron M. Cook

APPENDIX A – CURVE GEOMETRICS

		STATE OF	PROJECT	SHEET	TOTAL SHEETS	1					
		SOUTH DAKOTA	IM 0901(120)33	1	319						
		Plotting I	Date: 27-NOV-2007								
0	IN	DEX OF	- SECTIONS								
5	Section	A: Est	imate of Quantities								
	Section	B: Gra	ding Plans								
	Section	C: Tra	ffic Control Plans			TLE					
	Section	D: Ero	sion And Sediment Contro	ol Pla	ns	Ē					
	Section	E: Str	ucture Plans			' Ш					
	Section	F: Sur	facing Plans			MAN					
	Section	L: Lig	hting Plans			LO					
	Section	M: Pav	ement Marking Plans								
	Section	S: Sig	ning Plans								
	Section	X: Cro	ss Sections								
	Section	Z: Pip	e Sections								
						L					

Eastbound 307+43.37 MRM 38.34

								STATE OF	PROJECT	SHEET	TOTAL
							• - •	SOUTH	IM 0901(120)33	B18	SHEETS R69
				HORIZONTAL	. ALIGNM	ENI DA	ΑΙΑ	DAKOTA			B03
		MAINII	NE WEST BOUND I ANF		Type	Station			Northing East	zing	
				-	POE	449+99.80			183662.574 1071821.	.408	
Туре	Station			Northing Easting	-						
POB	0+00.00			223586.822 1054604.083							
		TL= 2334.38	S 53°41'56" E				MAINLIN	NE EAST BOUND LAN	E		
PC	23+34.38			222204.807 1056485.400							
PI	33+20	R = 2851.00	Delta = 38°09'43" R	221620.958 1057280.186	Туре	Station			Northing East	ing	
PT	42+33.29			220670.810 1057544.348	POB	0+00.00			223519.054 1054554.	.228	
		TL= 564.06	S 15°32'14" E				TL= 1593.94	S 53°41'08" E			
PC	47+97.35			220127.366 1057695.437	PC	15+93.94			222575.095 1055838.	.591	
PI	57+46.98	R = 5709.64	Delta = 18°53'10" L	219212.438 1057949.807	PI	21+30.56	R = 2341.38	Delta = 25°49'03" R	222257.299 1056270.	.989	
PT	66+79.38			218429.103 1058486.633	PT	26+48.96			221782.911 1056521.	.827	
		TL= 1030.60	S 34°25'23" E				TL= 2687.50	S 27°52'05" E			
PC	77+09.97			217578.980 1059069.229	PC	53+36.47			219407.088 1057778.	.069	
PI	81+48.35	R = 11372.77	Delta = 4°24'54" L	217217.365 1059317.047	PI	58+07.25	R = 8120.56	Delta = 06°38'09" L	218990.904 1057998.	.131	
PT	85+86.30			216875.900 1059591.965	PT	62+76.98			218602.939 1058264.	.812	
		TL= 3395.65	S 38°50'17" E				TL= 1336.09	S 34°30'15" E			
PC	119+81.95			214230.959 1061721.449	PC	76+13.07			217501.884 1059021.	.661	
PI	124+46.26	R = 5865.25	Delta = 09°03'09" R	213869.298 1062012.628	PI	80+40.60	R = 11309.44	Delta = 04°19'47" L	217149.564 1059263.	.841	
PT	129+08.64			213466.326 1062243.277	PT	84+67.72			216816.534 1059531.	.928	
		TL= 10302.63	S 29°47'08" E				TL= 3481.22	S 38°50'02" E			
PC	232+11.27			204524.767 1067361.162	PC	119+48.94			214104.777 1061714.	.877	
PI	239+91.14	R = 11688.66	Delta = 07°38'03" R	203847.927 1067748.566	PI	124+03.27	R = 5741.37	Delta = 09°02'56" R	213750.871 1061999.	.769	
PT	247+68.70			203125.620 1068042.618	PT	128+55.70			213356.562 1062225.	.453	
_		TL= 4044.00	S 22°09'05" E				TL= 8857.21	S 29°47'05" E			
PC	288+12.70			199380.103 1069567.423	PC	228+12.91			204714.731 1067171.	.641	
PI	296+54.28	R = 2659.32	Delta = 35°07'18" R	198600.635 1069884.746	PI	235+93.13	R = 11684.46	Delta = 07°38'26" R	204037.580 1067559.	.212	
PT	304+42.83			197780.523 1069695.867	PT	243+71.04			203314.911 1067853.	.310	
		TL= 1023.22	S 12°58'13" W				TL= 4293.42	S 22°08'40" E			
PC	314+66.05			196783.405 1069466.199	PC	286+64.47			199338.185 1069471.	<mark>.684</mark>	
PI	322+37.66	R = 5070.83	Delta = 17°18'15" L	196031.479 1069293.015	PI	294+71.06	R = 2549.47	Delta = 35°06'45" R	198591.085 1069775.	.725	
PT	329+97.53			195262.074 1069351.327	PT	302+26.85			197805.060 1069594.	.717	
5.0		TL= 3276.97	S 04°20'03" E	101004 452 1060500 050			TL= 932.48	S 12°58'05" W			
PC	362+47.50	- 40605 21		191994.473 1069598.972	PC	311+59.33			196896.366 1069385.	.461	
PI	368+37.02	R = 48685.31	Delta = 01°19'26" R	191433.557 1069641.483	PI	320+35.96	R = 5761.70	Delta = 17°18'08" L	196042.094 1069188.	.737	
P.I.	3/3+99.50			1908/1.808 10696/1.022	PT	328+99.25			195167.969 1069254.	.985	
Ъđ	200.10.20	TL= 210.87	S 03°00'36" E	100661 000 1060600 005			TL= 5925.06	S 04°20'03" E			
PC	3/6+10.3/			190661.228 1069682.095	PC	388+24.31			189259.855 1069702.	.750	
PI	382+65.28	R = 56940.14	Delta = 01°19'05" L	190007.219 1069716.486	PI	397+67.21	R = 5750.12	Delta = 18°37'30" L	188319.651 1069774.	.006	
Ъ.L	389+20.14		a 04010+41 ··· -	189354.1/4 1069765.910	PT	406+93.47			187451.443 1070141.	.805	
56	200:10 04	ть= 92.71	S U4°19'41" E	100001 000 1000000 000			TL= 4133.35	S 22°57'32" E			
PC	390+12.84			189261.733 1069772.906	POE	448+26.82			183645.517 1071754.	.108	
ΡŢ	399+40.83	R = 5662.15	Deita = 18°36'55" L	107401 007 1070004 500							
Ъ.1,	408+52.47			10/401.00/10/0204.690							
		ты= 4147.33	S 22~56'36" E								

The coordinates shown on this sheet are based on the South Dakota State Plane Coordinate System. North Zone (NAD 83/96) SF = 0.99987445

CONTROL DATA

HORIZ	ONTAL AND	VERTICAL	. CONTROL POINTS			
POINT	STATION	OFFSET	DESCRIPTION	NORTHING	EASTING	ELEVATION
CP 100	305+96.62	79.48' L	Harn 190-038.6	197612.8134	1069738.7857	3712.73
CP 19	439+65.29	109.64' L	USGS Bench Notes MRM I90-41.13	184657.9802	1071519.1056	3570.72
CP 20	394+75.27	34.13' R	Rebar And Cap Median Ditch Block S. STR. MRM 40.32	188797.2142	1069792.8748	3618.79
CP 21	394+39.74	163.98' L	USGS Bench Notes MRM I90-40.31	188862.3220	1069983.2484	3613.99
CP 22	385+83.19	37.87' R	BM #12 Notes Rebar and Cap Median Ditch N of STR. MRM 40.153	189687.5939	1069703.6979	3620.09
CP 23	342+37.97	79.28' L	USGS Bench Notes MRM 190-39.29	194031.1702	1069524.1257	3638.05
CP 27	<mark>292+63.22</mark>	113.17' L	USGS Bench Notes MRM I90-38.3	198974.8578	1069811.7284	3704.47
CP 28	<mark>237+78.70</mark>	112.46' L	USGS Bench Notes MRM I90-37.35	204076.7173	1067731.1713	<mark>3637.04</mark>
CP 30	214+27.22	69.06' L	Rebar and Cap Notes BM# 8 MRM 36.90 W of On Ramp Exit 37	206107.43	1066534.8650	3647.06
CP 31	211+55.44	112.40' L	MRM I90-36.80 E of WBL Exit 37 On Ramp R/W Feonce	206364.8328	1066437.4680	3648.02
CP 32	191+22.12	111.72' L	USGS Bench Notes MRM I90-36.45	208129.1992	1065426.8211	3669.88
CP 33	142+62.96	110.97' L	USGS Bench Notes MRM 190- 35.54	212346.0470	1063012.3500	3652.13
CP 37	91+59.01	104.70' L	USGS Bench Notes MRM I90-34.6 WB On Ramp R/W Fence	216495.4669	1060032.6732	3615.36
CP 39	45+15.61	36.65' R	BM #3 Rebar and Cap W of WBL & 3 Cable Median MRM 33.70	220388.9926	1057584.6628	3642.16
CP 40	42+15.12	70.29' L	USGS Bench Notes MRM I90-33.65 E of WBL Toe of Back Slope	220707.5541	1057607.0238	3636.27
CP 42	37+82.33	71.21' R	BM #4 Rebar and Cap W 50ft of WBL SH. & # Cable Median MRM 33.50	221064.3086	1057325.0183	3619.13

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	IM 0901(120)33	B19	B69

																					PROJECT	CUEET	TOTAL
																			SOUTH	ΙM	0901(120)33		SHEETS
2 2 2																						630	D03
3750										WEGT									otting D	ate: 19-N	10V-2007		
0130					307-	+00				WE SI		ANE				EXC	24106	EMB 2	1119				
																	8834	+25-%	5280-26	<u>399</u> —			
3740																BURRUW EXC	4500 Ur	+25.%	8834 2207 1	041			3740
		700 (50														TOTAL	37440	WASTE	37	440			
	Ele	v 3722.60					PVI 309	+00								+	•						
3730							Elev 31	20.60								Hau Borrow Hau	1 22		(Sta				3730
0																Dead Hau	1 23 9,		í Sta				
7700				-0,23	5 3%						P	L 400.00f	+)%	— M	B	. .							7700
5720												G2 0.0000	%		BOFFO	EXC TO DE OD			года ки	W 310+0			5120
										68002		N 230						- -			FVI-329	+00	
3710																					Elev 37	08.00	3710
														0.0	00%							4	
		1000.	00ft	• +	⊲	L-6	600.00ft			+													
3700	<	G1 2.9	529%			G2 ·	-1.6800%				F	PVI 316+50	0										3700
		K 31	4				K 415					- Tev 5708.0	0										
				• • • • • • • • • • • • • • • • • • • •			••••										•	- -					
3690																4			1600.00	ft প			3690
																		G2	-4.937	5%			
7000			1																K 324				7000
3680																							3680
																		- -					
3670																							3670
06	25	29	4 2 2	50 31	95	35	52 44	12	56 88 88	20	57	31 47	05	00	00 00	85	90 90	53	14	45	44	50	3
· · · · · · · · · · · · · · · · · · ·	<u>6</u>	5		2 2	;	<u>c</u>	- <u>e</u> e	····· <u>t</u>	- <u></u>		····è	- .	······				<u>.</u>						
3660m	37	37:	37:	37:	37:	37:	37	37	37	37.	37.	37(37(37(37(37(27.0	370	37(37(37(3660
300	+00		3	05+00			310	+00			315+00			32	20+00			325-	+00			330	0+00
]			[EAST												_	
7740																							7740
5740			PVI 302+98 FLev 3726-95		307 Begin	+00																	5140
																±xc 2474 \$UT-1 5 31 6	+25•% <u>-</u>	6116 - 1529 76 4	45				
3730															BORROW	тхс эофо пис	ERCUT 1	5316 3829 1914	45				3730
			4												TO	TAL 26790	WASTE	2670	20				
										+		· 				Haul 2	3.000 0	2013 Y Sta					
3720											L 400.	00ft 6815%	<u> </u>		Bor	row Haul 3		Y Sta				,	3720
						9					G2 0.0	0167%		Borrow	Eve to b	e obtained fro		Furnishe	ad Pi+ P		Elev 3706.	10	
								-1.6813%				30		d	nd excess	material gen	erated (on the pr	oject				
3710			<u> </u>			<u>├</u>	_											+ +				+	3710
														0.0167%	<u>.</u>						<u> </u>		
3700	4		G1 2.4611	1%																			3700
5100			G2 -1.681 K 266	3%								PVI 315+50										1	5100
			+							·		- 18V 3105.9				+		- -					
3690																						\searrow	3690
																		L 1500	.00f+				
	+		1			<u>├</u>				+					¤	+		G1 0,0	0167%			-+₽	×
3680			<u> </u>															K 3	09 09				3680
	1		1			[- -				1	
3670 ∾	4	<u>م</u> رو	ف ا	<u>-</u>	8	~	a a	~	<u>∞</u> 0	0	N	<u>ດ</u>	4	<u>م</u>	2 2	1 0	- u		4	2	<u>4</u> c	2 4	3670
			·····	2.7		4				4	2		თ ნ	ന •	ກ 80 ທີ່	м и 			S			ە م	
3660	1715	572	22	372	1715	121	121	371	171	100	.018	10 ¹	106	210	i023	210			10(1691	69	6 89	3660
U	<u>г</u> р	א ניי	<u>۲</u> ۲۷ ۲۷	05-00	(יין ו	1 171	710	100	כיו דיי	1 (1)	745.000	(יין ויין	(ייו	1/1	<u>., 10</u>	ין דיין די	a M	705		P 7	<u> </u>	770	,

APPENDIX B – ITS SOLUTION

Example – Adverse Weather Warning System

Source: FHWA, Best Practices for Road Weather Management